Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.274
Filtrar
1.
Molecules ; 29(5)2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38474659

RESUMO

Currently, in the ongoing development of the tobacco industry, a large amount of tobacco rhizomes is discarded as waste. These wastes are usually disposed of through incineration or burial. However, these tobacco wastes still have some economic value. High-purity nicotine has a promising market outlook as the primary raw material for electronic cigarette liquid. Nicotine is not only found in tobacco leaves but also in the rhizomes of tobacco plants. This study presents a method for treating tobacco waste and extracting high-purity nicotine from it. After mixing the raw material powder and entrainer in specific ratios, as much of the nicotine in tobacco roots can be extracted as possible using supercritical carbon dioxide extraction. The effects of temperature, the ratio of the entrainer, and the volume fraction of ethanol in the entrainer on the nicotine yield in supercritical fluid extraction (SFE) at 25 MPa for 120 min were discussed. By using 90% ethanol (a raw material mass-to-volume ratio of 1:5) as the entrainer, we obtained the highest nicotine yield of 0.49% at 65 °C. Meanwhile, the purity of the crude extract was 61.71%, and after purification, it increased to 97.57%. In this way, we can not only obtain nicotine with market value but also further reduce the harm to the environment caused by tobacco waste disposal.


Assuntos
Cromatografia com Fluido Supercrítico , Sistemas Eletrônicos de Liberação de Nicotina , Rizoma , Nicotina , Dióxido de Carbono , Tabaco , Etanol , Cromatografia com Fluido Supercrítico/métodos
2.
J Chromatogr A ; 1720: 464804, 2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-38461770

RESUMO

Advanced chemical recycling techniques provide new avenues for handling and recycling mixed plastic waste; pyrolysis is a prominent approach involving heating plastic waste in an oxygen-free environment to create pyrolysis oils. Pyrolysis oils must be thoroughly characterized before being refined into fuels and chemical feedstocks. Here, a method based on supercritical fluid chromatography with ultraviolet detection was developed to analyze plastic waste pyrolysis oils. Multiple stationary phases were examined, and 2-ethyl pyridine was chosen as the best stationary phase for resolving pyrolysis oil components. Different standards and different plastic waste pyrolysis oils were compared across the different stationary phases. Up to three columns were serially coupled to increase efficiency and column capacity. It was found that a general method using ethanol as a modifier and two 2-ethyl pyridine columns could effectively resolve plastic waste pyrolysis oils. The potential for differentiating polyethylene and polypropylene feedstocks was demonstrated using principal component analysis.


Assuntos
Cromatografia com Fluido Supercrítico , Plásticos , Plásticos/química , Pirólise , Óleos/química , Piridinas
3.
J Chromatogr A ; 1720: 464811, 2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-38490143

RESUMO

A novel silica stationary phase was designed and prepared through thiol-epoxy click chemistry for supercritical fluid chromatography (SFC). The developed stationary phase was characterized by elemental analysis, Fourier transform infrared spectrometry and solid-state 13C/CP MAS NMR spectroscopy. In order to evaluate the chromatographic performance and retention mechanisms of the prepared column, a variety of alkaloids were used, including indoles, isoquinolines, pyrrolidines, piperidines, quinolizidines and organic amines. The stationary phase showed more symmetrical peak shapes and better performance for these compounds compared to the conventional SFC stationary phases. The investigations on the effects of pressure and temperature on retention provided information that the selectivity of the compounds can be improved by changing the density of the supercritical fluids. Moreover, it shows improved separation efficiency of three natural products with alkaloids as the main components at high sample loading. In conclusion, the developed stationary phase could offer flexible selectivity toward alkaloids and complex samples.


Assuntos
Alcaloides , Cromatografia com Fluido Supercrítico , Cromatografia com Fluido Supercrítico/métodos , Compostos de Sulfidrila , Temperatura , Aminas , Dióxido de Silício/química
4.
J Ethnopharmacol ; 327: 117835, 2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38490290

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: The root of Croton crassifolius has been used as a traditional Chinese medicine (TCM), called Radix Croton Crassifolius, and commonly known as "Ji Gu Xiang" in Chinese. Its medicinal value has been recorded in several medical books or handbooks, such as "Sheng Cao Yao Xing Bei Yao", "Ben Cao Qiu Yuan" and "Zhong Hua Ben Cao". It has been traditional employed for treating sore throat, stomach-ache, rheumatism and cancer. AIM OF THE STUDY: At present, there are limited studies on the evaluation of low-polarity extracts of roots in C. crassifolius. Consequently, the aim of this study was to evaluate the antitumor effect of the low-polarity extract of C. crassifolius root. MATERIALS AND METHODS: Extracts were obtained by supercritical fluid extraction. The extracts were tested for antitumor effects in vitro on several cancer cell lines. A CCK-8 kit was used for further analysis of cell viability. A flow cytometer and propidium iodide staining were used to evaluate the cell cycle and apoptosis. Hoechst staining, JC-1 staining and the fluorescence probe DCFH-DA were used to evaluate apoptotic cells. Molecular mechanisms of action were analyzed by quantitative RT‒PCR and Western blotting. Immunohistochemistry was used for the evaluation of xenograft tumors in male BALB/c mice. Finally, molecular docking was employed to predict the bond between the desired bioactive compound and molecular targets. RESULTS: Eleven diterpenoids were isolated from low-polarity C. crassifolius root extracts. Among the compounds, chettaphanin II showed the strongest activity (IC50 = 8.58 µM) against A549 cells. Evaluation of cell viability and the cell cycle showed that Chettaphanin II reduced A549 cell proliferation and induced G2/M-phase arrest. Chttaphanin II significantly induced apoptosis in A549 cells, which was related to the level of apoptosis-related proteins. The growth of tumor tissue was significantly inhibited by chettaphanin II in experiments performed on naked mice. The antitumor mechanism of chettaphanin II is that it can obstruct the mTOR/PI3K/Akt signaling pathway in A549 cells. Molecular docking established that chettaphanin II could bind to the active sites of Bcl-2 and Bax. CONCLUSIONS: Taken together, the natural diterpenoid chettaphanin II was identified as the major antitumor active component, and its potential for developing anticancer therapies was demonstrated for the first time by antiproliferation evaluation in vitro and in vivo.


Assuntos
Cromatografia com Fluido Supercrítico , Croton , Diterpenos , Humanos , Masculino , Camundongos , Animais , Croton/química , Simulação de Acoplamento Molecular , Fosfatidilinositol 3-Quinases , Extratos Vegetais/uso terapêutico , Diterpenos/farmacologia , Proliferação de Células , Camundongos Endogâmicos BALB C , Apoptose , Linhagem Celular Tumoral
5.
Artigo em Inglês | MEDLINE | ID: mdl-38513431

RESUMO

Fat-soluble vitamin D is an essential bioactive compound important for human health. Insufficient vitamin D levels can result not only in bone disease but also in other disorders, such as cancer, metabolic disorders, and diseases related to poor immune function. The current methods commonly used for vitamin D analysis are often applied to determine the levels of the most abundant metabolite in plasma, i.e., 25-OH-D2/D3. These methods do not consider the presence of other hydroxylated and esterified metabolites, including isomers and epimers, which are typically found in low concentrations. In this study, we developed a fast and selective ultra-high performance supercritical fluid chromatography (UHPSFC) method using a 150 mm long 1-amino anthracene (1-AA) column and a mobile phase consisting of carbon dioxide and methanol/isopropanol (1/1, v/v) mixed with 8 % water. After thorough optimization of column temperature and back pressure, the separation of four vitamin D3 esters, vitamin D3 and D2, and eight mono- and di-hydroxylated metabolites, including three groups of isomers, was achieved in 10 min. Two ion sources, atmospheric pressure chemical ionization (APCI) and atmospheric pressure photoionization optimized within this study, were compared in tandem mass spectrometry (MS/MS) detection. No significant sensitivity differences were observed. Subsequently, the same 1-AA column chemistry was examined in ultra-high performance liquid chromatography (UHPLC) as the stationary phase that could hypothetically bring different selectivity in the separation of vitamin D and its metabolites. However, this hypothesis was rejected, and C18 was used as a stationary phase in the final optimized UHPLC-MS/MS method. Despite detailed optimization, the final 15 min UHPLC method was not able to separate di-hydroxylated isomers of vitamin D3, while it enabled better resolution of esterified forms compared to UHPSFC. Optimized methods provided similar repeatability of retention times and peak areas, with RSD < 2 % and 10 %, respectively. The lowest limits of quantification were in the range of 1.2 - 4.9 ng/mL for UHPSFC-APCI-MS/MS, while for UHPLC-APCI-MS/MS, they were typically in the range of 2.6 - 9.6 ng/mL. Based on the obtained results, the UHPSFC-APCI-MS/MS method was the most promising approach for fast, selective, and sensitive analysis that could be applied in the analysis of biological samples with emphasis on the separation of both hydroxylated and esterified metabolites, including isomeric forms.


Assuntos
Cromatografia com Fluido Supercrítico , Vitamina D , Humanos , Espectrometria de Massas em Tandem/métodos , Cromatografia Líquida de Alta Pressão/métodos , Cromatografia com Fluido Supercrítico/métodos , Vitaminas , Colecalciferol
6.
Anal Methods ; 16(15): 2278-2285, 2024 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-38525815

RESUMO

Sterols are unsaponifiable lipids resulting from plant metabolism that exhibit interesting bioactive properties. Microalgae are a major source of specific phytosterols, most of which are still not fully characterized. The similarity in sterol structures and the existence of positional isomers make the separation of phytosterols challenging. A method was developed based on an offline two-dimensional (2D) system, reversed-phase liquid chromatography (RPLC)-supercritical fluid chromatography (SFC)/quadrupole time-of-flight (Q-ToF) mass spectrometry, for the identification of sterols in microalgae. Subsequent positive-mode MS/MS was used to confirm the identified phytosterols. The 2D chromatogram exhibited a pattern related to the positions of the double bonds, which were confirmed by standard injection, enabling structural elucidation. The analysis of the unsaponifiable fraction of two algae, namely Scenedesmus obliquus, a freshwater microalgae, and Padina pavonica, a marine macroalgae, highlighted the ability of the method to distinguish a large number of sterol isomers.


Assuntos
Cromatografia com Fluido Supercrítico , Microalgas , Fitosteróis , Cromatografia de Fase Reversa/métodos , Fitosteróis/análise , Espectrometria de Massas em Tandem/métodos , Cromatografia com Fluido Supercrítico/métodos , Esteróis , Plantas
7.
Anal Chem ; 96(3): 1320-1327, 2024 01 23.
Artigo em Inglês | MEDLINE | ID: mdl-38193397

RESUMO

Supercritical fluid chromatography (SFC) is a rapidly expanding technique in the analysis of nonpolar to moderately polar substances and, more recently, also in the analysis of compounds with higher polarity. Herein, we demonstrate a proof of concept for the application of a commercial SFC instrument with electrospray ionization-mass spectrometry (MS) detection as a platform for the comprehensive analysis of metabolites with the full range of polarities, from nonpolar lipids up to highly polar metabolites. The developed single-platform SFC-MS lipidomic/metabolomic method is based on two consecutive injections of lipid and polar metabolite extracts from biphase methyl tert-butyl ether extraction using a diol column and two different gradient programs of methanol-water-ammonium formate modifier. Detailed development of the method focused mainly on the pressure limits of the system, the long-term repeatability of results, and the chromatographic performance, including optimization of the flow rate program, modifier composition and gradient, and injection solvent selection. The developed method enabled fast and comprehensive analysis of lipids and polar metabolites from plasma within a 24 min cycle with two injections using a simple analytical platform based on a single instrument, column, and mobile phase. Finally, the results from SFC-MS analysis of polar metabolites were compared with widely established liquid chromatography MS analysis in metabolomics. The comparison showed different separation selectivity of metabolites using both methods and overall lower sensitivity of the SFC-MS due to the higher flow rate and worse chromatographic performance.


Assuntos
Cromatografia com Fluido Supercrítico , Lipidômica , Cromatografia com Fluido Supercrítico/métodos , Metabolômica/métodos , Espectrometria de Massas por Ionização por Electrospray , Lipídeos
8.
J Chromatogr A ; 1716: 464640, 2024 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-38219626

RESUMO

In the last decade, the separation application based on aromatic stationary phases has been demonstrated in supercritical fluid chromatography (SFC). In this paper, four aromatic stationary phases involving aniline (S-aniline), 1-aminonaphthalene (S-1-ami-naph), 1-aminoanthracene (S-1-ami-anth) and 1-aminopyrene (S-1-ami-py) were synthesized based on full porous particles (FPP) silica, which were not end-capped for providing extra electrostatic interaction. Retention mechanism of these phases in SFC was investigated using a linear solvation energy relationship (LSER) model. The aromatic stationary phases with five positive parameters (a, b, s, e and d+) can provide hydrogen bonding, π-π, dipole-dipole and cation exchange interactions, which belong to the moderate polar phases. The LSER results obtained using routine test solutes demonstrated that the aforementioned interactions of four aromatic stationary phases were influenced by the type and bonding density of the ligand, but to a certain extent. Furthermore, the LSER data verified that the S-1-ami-anth column based on full porous particles silica had higher cation exchange capacity (d+ value), compared to the commercialized 1-AA column (based on the ethylene-bridged hybrid particles). The relationship between the d+ value and SFC additive was quantitatively proved so as to regulate electrostatic interaction reasonably. This value was greatly increased by phosphoric acid, slightly increased by trifluoroacetic acid and formic acid, but significantly reduced by ammonium formate and diethylamine. Taking the S-1-ami-naph column as an example, better peek shape of the flavonoids was obtained after the addition of 0.1 % phosphoric acid in MeOH while isoquinoline alkaloids were eluted successfully within 11 min after adding 0.1 % diethylamine in MeOH. Combined with the unique π-π interaction and controllable electrostatic interaction, the aromatic stationary phases in this study have been proven to have expandable application potential in SFC separation.


Assuntos
Cromatografia com Fluido Supercrítico , Ácidos Fosfóricos , Cromatografia com Fluido Supercrítico/métodos , Dióxido de Silício/química , Cátions , Compostos de Anilina , Dietilaminas
9.
Int J Biol Macromol ; 258(Pt 2): 129168, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38171432

RESUMO

Tyrosinase is a key enzyme in enzymatic browning, causing quality losses in food through the oxidation process. Thus, the discovery of an effective and natural tyrosinase inhibitor via green technology is of great interest to the global food market due to food security and climate change issues. In this study, Syzygium aqueum (S. aqueum) leaves, which are known to be rich in phenolic compounds (PC), were chosen as a natural source of tyrosinase inhibitor, and the effect of the sustainable, supercritical fluid extraction (SFE) process was evaluated. Response surface methodology-assisted supercritical fluid extraction (RSM-assisted SFE) was utilized to optimize the PCs extracted from S. aqueum. The highest amount of PC was obtained at the optimum conditions (55 °C, 3350 psi, and 70 min). The IC50 (661.815 µg/mL) of the optimized extract was evaluated, and its antioxidant activity (96.8 %) was determined. Gas chromatography-mass spectrometry (GC-MS) results reveal that 2',6'-dihydroxy-4'-methoxychalcone (2,6-D4MC) (82.65 %) was the major PC in S. aqueum. Chemometric analysis indicated that 2,6-D4MC has similar chemical properties to the tyrosinase inhibitor control (kaempferol). The toxicity and physiochemical properties of the novel 2,6-D4MC from S. aqueum revealed that the 2,6-D4MC is safer than kaempferol as predicted via absorption, distribution, metabolism, and excretion (ADME) evaluation. Enzyme kinetic analysis shows that the type of inhibition of the optimized extract is non-competitive inhibition with Km = 1.55 mM and Vmax = 0.017 µM/s. High-performance liquid chromatography (HPLC) analysis shows the effectiveness of S. aqueum as a tyrosinase inhibitor. The mechanistic insight of the tyrosinase inhibition using 2,6-D4MC was successfully calculated using density functional theory (DFT) and molecular docking approaches. The findings could have a significant impact on food security development by devising a sustainable and effective tyrosinase inhibitor from waste by-products that is aligned with the United Nation's SDG 2, zero hunger.


Assuntos
Cromatografia com Fluido Supercrítico , Syzygium , Monofenol Mono-Oxigenase , Syzygium/química , Quimiometria , Quempferóis , Cromatografia com Fluido Supercrítico/métodos , Simulação de Acoplamento Molecular , Cinética , Extratos Vegetais/química
10.
Electrophoresis ; 45(3-4): 218-233, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37794622

RESUMO

In this work, a preparative supercritical fluid chromatography (SFC) method was first developed to separate a series of chiral compounds evaluated as lactam-based P2RX7 antagonists. Subsequently, high-performance liquid chromatography, SFC, and capillary electrophoresis (CE) were comparatively investigated as QC tools to determine the enantiomeric purity of the separated isomers, including analytical performance and greenness. The screening of the best conditions was carried out in liquid and SFC on the nine derivatives and the amylose tris(3,5-dimethylphenylcarbamate)-based chiral stationary phase was found to be highly efficient. The same screening was carried out in CE and very different conditions, either in acidic or basic background electrolyte and different cyclodextrins used as chiral selectors, allowed the separation of six of the nine derivatives. 1-((3,4-Dichlorophenyl)carbamoyl)-5-oxopyrrolidine-2-carboxylic acid (compound 1) was chosen as a probe, and its semi-preparative separation by SFC and enantiomeric verification using the three techniques are presented. Its limit of detection and limit of quantification are calculated for each method. Finally, the greenness of each quality control method was evaluated.


Assuntos
Amilose , Cromatografia com Fluido Supercrítico , Cromatografia Líquida de Alta Pressão/métodos , Cromatografia com Fluido Supercrítico/métodos , Estereoisomerismo , Eletroforese Capilar
11.
J Chromatogr A ; 1713: 464546, 2024 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-38041976

RESUMO

Supercritical fluid chromatography (SFC), now using carbon dioxide as a major component of the mobile phase, has been known for over 60 years but still some misunderstandings remain about its capabilities. Amongst them, SFC is often described as a normal-phase chromatographic technique, based on different considerations: polarity of the stationary phase, elution order of the analytes, relative non-polarity of the mobile phase, non-linear retention behaviour, or adsorption retention mechanisms. All of these assumptions are true to a certain extent, and in certain circumstances. But also, all of these assumptions are wrong in different circumstances. In this paper, the criteria to categorize SFC as a normal-phase chromatographic method will be examined individually, considering all knowledge acquired from the early years of its development. Finally, it will appear that the "normal-phase" glass lens is greatly reducing the true extent of SFC's possibilities.


Assuntos
Cromatografia com Fluido Supercrítico , Cromatografia com Fluido Supercrítico/métodos , Dióxido de Carbono/química , Adsorção
12.
J Chromatogr A ; 1713: 464502, 2024 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-37980810

RESUMO

A chromatography-like propagation of water through the material bed was observed while performing supercritical fluid extraction of aroma plants having high moisture content. While parts of raw material bed placed at the inlet of the extraction vessel get dried after appropriate extraction time, the parts closer to the outlet not only stay wet but, in fact, gain more moisture than initial raw material. Presumably, water and other extractables with limited solubility in supercritical CO2, get re-adsorbed onto the plant material surface along the extraction column and then desorbed further on. If the effect is of general nature, it might be important for modeling kinetics of supercritical fluid extraction of non-volatile compounds.


Assuntos
Cromatografia com Fluido Supercrítico , Água , Dióxido de Carbono , Plantas , Solubilidade
13.
Biomed Chromatogr ; 38(3): e5759, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37845809

RESUMO

Matrix effect (ME) is commonly caused by coelution of compounds with target analytes, resulting in either suppression or enhancement of analyte ionization. Thus, to achieve the desired accuracy, precision, and sensitivity, ME needs to be evaluated and controlled during bioanalytical method development. As the application of supercritical fluid chromatography-mass spectrometry (SFC-MS) for analysis of biological samples has increased, ME using SFC-MS has also been investigated with a focus on the difference in ME in SFC-MS compared to other chromatographic techniques used for achiral separation in biological samples. Here, we provide a summary of the status of ME evaluation and mitigation in SFC-MS methods. This review presents an overview of the phenomenon of ME and methods for evaluating ME in bioanalysis. Next, the factors that can impact ME in SFC-MS-based bioanalytical methods are discussed in detail with an emphasis on SFC. A literature review of the evaluation of ME in targeted bioanalytical methods using SFC-MS is included at the end. Robust instrumentation, effective sample preparation, and superb separation selectivity are the foundations of reliable analytical methods as well as the ability to mitigate detrimental ME in SFC-MS methods.


Assuntos
Cromatografia com Fluido Supercrítico , Cromatografia com Fluido Supercrítico/métodos
14.
J Sep Sci ; 47(1): e2300655, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38014608

RESUMO

Metconazole is one of the widely-used chiral triazole fungicides in controlling wheat leaf rust, powdery mildew, Fusarium head blight with high efficacy, and so forth. In the current work, the effects of chiral stationary phases, alcoholic modifiers, and column temperature on the chiral separation of metconazole were discussed in detail. Amylose tris(3,5-dimethylphenylcarbamate)-coated chiral stationary phase exhibited much stronger chiral recognition ability toward metconazole stereoisomers in the CO2 /ethanol mixture as compared to the others. Then, a two-step semi-preparative separation of metconazole was performed through supercritical fluid chromatography and high-performance liquid chromatography, and the enantiomeric excess values of four stereoisomers were achieved over 98%. Moreover, the enantioselective cytotoxicity of cis-metconazole against HepG2 cells has been investigated, and the order of the cell proliferation toxicity against HepG2 cells was (1R, 5S)-metconazole > (1S, 5R)-metconazole > the mixture. Briefly, this study would provide valuable information in the preparative separation of optically pure metconazole products through chromatographic techniques and their environmental risk assessment.


Assuntos
Cromatografia com Fluido Supercrítico , Estereoisomerismo , Cromatografia com Fluido Supercrítico/métodos , Amilose/química , Triazóis/toxicidade
15.
J Sep Sci ; 47(1): e2300550, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38066382

RESUMO

Valeriana jatamansi Jones is a commonly used traditional Chinese medicine, boasting rich effective compositions with versatile chemical structures and wide polarity, including iridoids, chlorogenic acid, and flavonoids. Previous reports indicate that conventional high-performance liquid chromatography (HPLC) analytical methods have proven inefficient performance in comprehensively characterizing components in Valeriana jatamansi. In the present study, a hybrid online analytical platform combining supercritical fluid extraction with both conventional HPLC separation (reverse phase) and supercritical fluid chromatography (normal phase) has been established and validated. This system can provide online extraction with two different chromatographic separation modes to increase separation ability and has been connected to a mass spectrometer to acquire high-resolution mass spectrometry data. Then, the online platform was applied to screening components in Valeriana jatamansi. A total of 117 compounds were identified, including five lignans, 18 organic acids, six flavonoids, and 88 iridoids. Thirty-three compounds were reported from Valeriana jatamansi for the first time. These results enrich our understanding of the components of Valeriana jatamansi and prove that the developed online platform in this study is a robust approach for accelerating working efficiency in comprehensively analyzing complicated samples.


Assuntos
Cromatografia com Fluido Supercrítico , Valeriana , Valeriana/química , Cromatografia Líquida de Alta Pressão , Espectrometria de Massas , Iridoides/análise , Flavonoides/análise
16.
J Sep Sci ; 47(1): e2300623, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38066396

RESUMO

A supercritical fluid chromatography-tandem mass spectrometry (SFC-MS/MS) technique was developed for the rapid and simultaneous detection of nine pesticides (carbendazim, isoprocarb, paclobutrazol, isoprothiolane, flusilazole, quinalphos, piperonylbutoxide, propargite, and bioresmethrin) in rice, wheat, and maize. The cereal samples were extracted with a solution of 0.5% acetic acid in acetonitrile and purified using quick, easy, cheap, effective, rugged, and safe method. The samples were characterized using multi-reaction monitoring and quantified with the external standard method. Excellent linearities (R2  > 0.9991) and limits of quantification (0.4-40.0 µg/kg) were established for all nine pesticides. Satisfactory pesticide recovery rates (62.2%-107.4%) were obtained at three standard concentrations (50, 100, and 200 µg/kg), with relative standard deviations in the range of 2.1%-14.3%. The results confirmed that the proposed method was suitable for the routine detection of these pesticides in grain samples. Compared with high-performance liquid chromatography-MS/MS, the overall test run time and the amount of solvent required were reduced by 66% and 90%, respectively, when SFC-MS/MS was applied. Therefore, the use of SFC-MS/MS permits a shorter run time and affords greater analytical efficiency, such that it is both economical and environmentally sustainable.


Assuntos
Cromatografia com Fluido Supercrítico , Resíduos de Praguicidas , Praguicidas , Espectrometria de Massas em Tandem/métodos , Resíduos de Praguicidas/análise , Grão Comestível/química , Cromatografia com Fluido Supercrítico/métodos , Praguicidas/análise , Cromatografia Líquida de Alta Pressão/métodos
17.
Anal Chim Acta ; 1285: 342010, 2024 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-38057057

RESUMO

BACKGROUND: The determination of plant hormones is still a very challenging analytical discipline, mainly due to their low concentration in complex plant matrices. Therefore, the involvement of very sensitive high-throughput techniques is required. Cytokinins (CKs) are semi-polar basic plant hormones regulating plant growth and development. Modern methods for CK determination are currently based on ultra-high performance liquid chromatography-tandem mass spectrometry (UHPLC-MS/MS), which enables the separation of CK isomeric forms occurring endogenously in plants. Here, ultra-high performance supercritical fluid chromatography coupled with tandem mass spectrometry (UHPSFC-MS/MS) was used for the simultaneous determination of 37 CK metabolites. RESULTS: The chromatographic conditions were tested on three different columns with various retention mechanisms. Hybrid silica modified with 2-picolylamine was selected as the stationary phase. Several parameters such as column temperature, back pressure regulation, mobile phase composition and make-up solvent were investigated to achieve efficient separation of CK isomers and reasonable sensitivity. Compared to UHPLC-MS/MS, a 9-min chromatographic analysis using a mobile phase of supercritical CO2 and 5 mM ammonia in methanol represents a three-fold acceleration of total run time. The quantification limit of UHPSFC-MS/MS method was in the range of 0.03-0.19 fmol per injection and the method validation showed high accuracy and precision (below 15 % for most analytes). The method was finally applied to the complex plant matrix of the model plant Arabidopsis thaliana and the obtained profiles of CK metabolites were compared with the results from the conventional UHPLC-MS/MS method. SIGNIFICANCE: The presented work offers a novel approach for quantification of endogenous CKs in plants. Compared to the conventional UHPLC-MS/MS, the total run time is shorter and the matrix effect lower for the key CK metabolites. This approach opens the opportunity to utilize UHPSFC-MS/MS instrumentation for targeted plant hormonomics including other plant hormone families.


Assuntos
Cromatografia com Fluido Supercrítico , Espectrometria de Massas em Tandem , Humanos , Espectrometria de Massas em Tandem/métodos , Citocininas , Reguladores de Crescimento de Plantas , Cromatografia com Fluido Supercrítico/métodos , Cromatografia Líquida de Alta Pressão/métodos , Plantas
18.
Food Res Int ; 175: 113769, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38129060

RESUMO

This experiment aimed to establish a green, simple and highly sensitive method (supercritical fluid chromatography (SFC) coupled with ion mobility quadrupole time-of-flight mass spectrometry (IM-Q-TOF/MS)) for the detection of multiple pesticides in foods. During the experiments, several important SFC parameters, such as stationary phase, modifier, make-up solution, back-temperature and back-pressure were optimized. Here, single-field collision cross section (CCS) values and multifield CCS values of 20 pesticides were examined by IM-Q-TOF/MS as highly specific parameters with excellent experimental precision. In addition, based on accurate mass matching and fragment ion comparison, mass fragments were obtained by IM-Q-TOF/MS, which elucidated the regularities of compound structure and characteristic fragment ions. Under the optimized conditions, satisfactory linearity (R2 ≥ 0.9989) and recoveries (79.60 % to 112.97 %) were obtained. The intra- and interday precisions were favorable, with RSDs lower than 4.91 and 7.65 %, respectively. Additionally, the method showed low limits of detection (0.1-8.8 ng/mL). The proposed method has been successfully applied to the highly sensitive detection of phenylurea herbicide, triazine herbicides, organophosphorus pesticide, pyrethroid insecticide and acaricide in yam and potato.


Assuntos
Cromatografia com Fluido Supercrítico , Resíduos de Praguicidas , Praguicidas , Resíduos de Praguicidas/análise , Praguicidas/análise , Cromatografia com Fluido Supercrítico/métodos , Compostos Organofosforados/análise , Espectrometria de Massas
19.
Molecules ; 28(23)2023 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-38067455

RESUMO

Mosla chinensis Maxim is an annual herb with many potential purposes in agricultural, industrial, and pharmaceutical fields. At present, the extract of the whole plant from M. chinensis has been proven to demonstrate antifungal, antioxidant, and anti-inflammatory activities. Previous studies focused on the enzyme pretreatment in hydrodistillation from M. chinensis. However, organic solvent or supercritical fluid carbon dioxide extraction (SFE-CO2) methods, which are commonly utilized in industry, have seldom been studied and cannot provide multiple evaluations of yield. In this work, we analysed compounds from M. chinensis by HPLC-DAD, discussed n-hexane extraction, and conducted further investigations on SFE-CO2 through the design of response surface methodology (RSM). The sample obtained from pilot-scale SFE-CO2 was also tested against nine kinds of microorganisms. Single-factor results revealed that the extraction rates from M. chinensis by steam distillation, n-hexane extraction, and SFE-CO2 were 1%, 2.09%, and 3.26%, respectively. RSM results showed a significant improvement in extraction rate through optimising pressure and time, and the interaction of both factors was more important than that of temperature-pressure and temperature-time. A pilot-scale test with an extraction rate of 3.34% indicated that the predicted RSM condition was operable. In addition, samples from the pilot-scale SFE-CO2 showed antibacterial effects against three previously unreported bacteria (Gardnerella vaginalis, methicillin-resistant Staphylococcus aureus, and Propionibacterium acnes). These results fill the gap in previous research and provide more information for the application and development of M. chinensis in the future.


Assuntos
Cromatografia com Fluido Supercrítico , Lamiaceae , Staphylococcus aureus Resistente à Meticilina , Óleos Voláteis , Óleos Voláteis/análise , Dióxido de Carbono , Cromatografia Líquida de Alta Pressão , Cromatografia com Fluido Supercrítico/métodos
20.
Molecules ; 28(23)2023 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-38067483

RESUMO

The fruits of Amomum kravanh, Citrus hystrix and Piper nigrum 'Kampot' are traditionally used as spices in Cambodian cuisine. In this study, the chemical composition of essential oils (EOs) and supercritical CO2 extracts from all three species was determined using GC-MS, with two columns of different polarity (HP-5/DB-HeavyWAX). Differences between the chemical profile of the EOs and CO2 extracts were observed for all species. The greatest difference was detected in A. kravanh EO containing mainly eucalyptol (78.8/72.6%), while the CO2 extract was rich in fatty acids (13/55.92%) and long-chain alkanes (25.55/9.54%). Furthermore, the results for the CO2 extract of this species differed, where tricosane (14.74%) and oleic acid (29.26%) were the main compounds identified when utilizing the HP-5 or DB-HeavyWAX columns, respectively. Moreover, the EO and CO2 extract from P. nigrum 'Kampot' fruits and the CO2 extract from C. hystrix fruit peel, containing respective amounts 34.84/39.55% (for EO) and 54.21/55.86% (for CO2 extract) of ß-caryophyllene and 30.2/28.9% of ß-pinene, were isolated and analyzed for the first time. Generally, these findings suggest that supercritical CO2 could potentially be used for the extraction of all three spices. Nevertheless, further research determining the most efficient extraction parameters is required before its commercial application.


Assuntos
Amomum , Cromatografia com Fluido Supercrítico , Citrus , Óleos Voláteis , Piper nigrum , Óleos Voláteis/química , Piper nigrum/química , Dióxido de Carbono/química , Amomum/química , Extratos Vegetais/química , Óleos de Plantas/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...